
Making Multipath TCP
robust for stateless

webservers

Christoph Paasch <cpaasch@apple.com>
Anumita Biswas <anumita_biswas@apple.com>

Darren Haas <dhaas@apple.com>

draft-paasch-mptcp-syncookies

mailto:cpaasch@apple.com
mailto:anumita_biswas@apple.com
mailto:dhaas@apple.com

TCP SYN-cookies
• Used to handle SYN-flooding attacks

• Server handles SYN in a stateless manner

SYN - Seq = X
Server

Y = Hash(4-tuple, X,
 local_secret)

SYN/ACK - Seq = Y, Ack = X+1

ACK - Seq = X+1, Ack = Y+1
Verify:
Ack = Hash(4-tuple,
 Seq-1,
 local_secret) - 1

Loss of third Ack
SYN - Seq = X

Server

SYN/ACK - Seq = Y, Ack = X+1

ACK - Seq = X+1, Ack = Y+1

Verify:
Ack = Hash(4-tuple,
 Seq-1,
 local_secret) - 1

Data - Seq = X+1, Ack = Y+1

MPTCP with SYN-cookies

• Echoing the keys in the third ACK allows stateless
servers for MPTCP

• However, a loss of the third ACK will make MPTCP
fallback to regular TCP

➡ When packet-loss is high (and MPTCP would
provide benefits), there is a higher chance of
falling back to regular TCP

Reliable MP_CAPABLE
• Make MP_CAPABLE reliable

• Combining data with MP_CAPABLE allows for reliability

SYN + MP_C

SYN/ACK + MP_C

ACK + MP_C

Data + DSS + MP_C(Key_A, Key_B) Running out of
TCP-option space

Combining MP_CAPABLE
with DSS-option

Internet-Draft Multipath TCP deployment August 2015

 on the very first data segment from the client to the server. This
 option serves the dual purpose of conveying the client’s and server’s
 key as well as the DSS mapping which would otherwise have been sent
 in a DSS option on the first data segment. The MP_CAPABLE_ACK option
 (shown in Figure 1) contains the same set of bits A to H as well as
 the version number, like the MP_CAPABLE option. The server behaves
 in a stateless manner and thus has generated it’s own key in a
 verifiable fashion (e.g., as a hash of the 4-tuple, sequence number
 and a local secret - similar to what is done for the TCP-sequence
 number in case of SYN-cookies [RFC4987]). It is thus able to verify
 whether it is indeed the originator of the key echoed back in the
 MP_CAPABLE_ACK option.

 Further, the option includes the data-level length as well as the
 checksum (in case it has been negotiated during the 3-way handshake).
 This allows the server to reconstruct the mapping and deliver the
 data to the application. It must be noted that the information
 inside the MP_CAPABLE_ACK is less explicit than a DSS option.
 Notably, the data-sequence number, data acknowledgment as well as the
 relative subflow-sequence number are not part of the MP_CAPABLE_ACK.
 Nevertheless, the server is able to reconstruct the mapping because
 the MP_CAPABLE_ACK is guaranteed to only be sent on the very first
 data segment. Thus, implicitly the relative subflow-sequence number
 equals 1 as well as the data-sequence number, which is equal to the
 initial data-sequence number.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length=24 |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-----------------------+
 | Sender’s Key (64 bits) |
 | |
 +---------------+---------------+-------+-----------------------+
 | Receiver’s Key (64 bits) |
 | |
 +---+
 | Data-Level Length (2 octets) | Checksum (2 octets, optional) |
 +---+

 Format of the MP_CAPABLE_ACK option.

 Figure 1

 Making the MP_CAPABLE in the third ACK reliable opens the door for
 another improvement in MPTCP. In fact, the client doesn’t need to
 send its own key in the SYN anymore (it will send it reliably in the
 third ACK). Thus, the MP_CAPABLE option in the SYN segment can avoid

Paasch, et al. Expires March 2, 2016 [Page 5]

• Only sent on the first data-segment

➡ data-sequence number = IDSN

➡ subflow-sequence number = 1

Reliable MP_CAPABLE
SYN + MP_C(Key_A)

SYN/ACK + MP_C(Key_B)

ACK + MP_C(Key_A, Key_B)

Data + MP_C(Key_A, Key_B, len, csum)

Gaining option-space in the
SYN

SYN + MP_C

SYN/ACK + MP_C(Key_B)

ACK + MP_C(Key_A, Key_B)

MP_CAPABLE reduced
to 4 bytes

Data + MP_C(Key_A, Key_B, len, csum)

Reliable MP_CAPABLE
• Fully enables stateless web servers

• opens the door to reduce MP_CAPABLE in the SYN
down to 4 bytes

➡ Need to ensure delivery of MP_CAPABLE in
case of TFO (details are in the draft)

• Inclusion into RFC6824bis ?

Backup (MPTCP + TFO)
SYN/Data + MP_C + TFO

SYN/ACK + MP_C(Key_B)

ACK + MP_C(Key_A, Key_B) + Data_Ack

Backup (MPTCP + TFO)

ACK + MP_C(Key_A, Key_B) + Data_Ack

• Server must reply to ACK + MP_CAPABLE with Data_Ack

• Acknowledge reception of MP_CAPABLE

• Client must send MP_CAPABLE + Data_Ack until it received one
Data_Ack

Data + DSS (no Data_Ack)

SYN/Data + MP_C + TFO

SYN/ACK + MP_C(Key_B)

