
draft-ietf-soc-overload-design-00

Volker Hilt, Eric Noel,

Charles Shen, Ahmed Abdelal

(volker.hilt@alcatel-lucent.com, eric.noel@att.com,

charles@cs.columbia.edu, aabdelal@sonusnet.com)

SOC Virtual Interim Meeting, June 2010

Slide 2 | 72 IETF Meeting | July 2008

Motivation

Design considerations and models for an overload control solution for SIP.

 Frame the discussion of an SIP overload control mechanism.

 Describe possible design choices and models.

 Does not define a solution for SIP overload control.

Contributors are the members of the SIP overload control design team.

Overload Control

 Overload occurs if a SIP server does not have sufficient resources to process all
incoming SIP messages.

 Overload control is used by a SIP server if it is unable to process all SIP requests
due to resource constraints. There are other failure cases in which a SIP server
can successfully process incoming requests but has to reject them for other
reasons.

 An overload control mechanism enables a SIP server to perform close to its
capacity limit during times of overload.

Slide 3 | 72 IETF Meeting | July 2008

Slide 4 | 72 IETF Meeting | July 2008

Implicit/Explicit Overload Control

Explicit Overload Control

 An explicit overload signal is used to request a reduction in the incoming load.

 Upstream neighbors adjust transmission to a level that is acceptable to the
downstream server.

 Enables a SIP server to steer the load it is receiving to a rate at which it
can perform at maximum capacity.

Implicit Overload Control

 Uses the absence of responses and packet loss as an indication of overload.

 A SIP server that is sensing such a condition reduces the load it is forwarding a
downstream neighbor.

 Avoids that an overloaded server, which has become unable to generate
overload control feedback, will be overwhelmed with requests.

 The ideas of explicit and implicit overload control are complementary!

Overload Control Model

 Monitor: monitors SIP load and generates load samples (S).

 Control Function: implements overload control algorithm that decides
when to throttle and to which extent.
 Uses load samples (S) and generates throttles (T).
 Receiving entity sends load feedback (F) to sending entity.

 Actuator: Implements well-defined behavior for throttles (T).

SIP
Processor

Actuator

SIP
Processor

Monitor

Control
Function

SendingEntity Receiving Entity

Overload
Control

SIP
System

(S)

(F)Control
Function

(T)

Slide 6 | Volker Hilt | March 2008

A B

C

D

A B

C

D

Hop-by-hop

End-to-end

Hop-by-hop vs. end-to-end

Hop-by-hop overload control
 Server provides overload control feedback to its direct

upstream neighbor.
 No knowledge about routing policies of neighbors needed.

 Neighbor processes feedback and rejects/retries
excess requests if needed.

 End-to-end overload control
 A single control loop for each source-destination pair.

 Endpoints need to track load of all servers on all possible
paths to a target.

 SIP requests for the same source/destination pair can
travel along different paths, depending on policies,
services, forwarding rules, forking, load, etc.
 A SIP proxy often cannot make assumptions about which

downstream proxies will be on the path of a SIP request.

 Can be applicable in limited, tightly controlled
environments.

x

x

7

Local Overload Control

 Servers locally reject messages that exceed their
processing capacity.

 Assumption: rejecting messages is less expensive
than processing them and stops retransmissions.

 Fully implemented within a SIP server and does not
require cooperation between servers.

 Can be used in conjunction with other mechanisms and
provides an additional layer of protection.

 Local overload control mechanism can act as a
mechanism of last resort that is activated if other
mechanisms do not provide adequate results.

Local Overload control

A B

C

D

Slide 8 | Volker Hilt | March 2008

Client-to-Server vs. Server-to-Server Communication

Server-to-Server
Communication

D

UA-to-Server
Communication

a

b

c

z

…

Server-to-Server Communication

 A server sends a stream of SIP requests to other servers.

 SIP request streams between servers are dynamic.
 Load between servers can be reduced gradually by

rejecting/retrying some of the requests.

 Overload control can use feedback to request that an
upstream server reduces traffic to a desired amount.

Client-to-Server Communication

 UAs typically only initiate a single request at a time.
 A UA can be told to wait a certain time before re-

sending the request.

 Problem: a large number of UAs can cause overload even
if all UAs are told to back-up.

 Feedback-based overload control does not prevent
overload in the server.

DB

A

C

Slide 9 | Volker Hilt

Rate-based Overload Control

 Server sets a rate cap of t requests per
second for each client.

 Rate cap t is determined by a control
algorithm executed by D.

 Client throttles load, e.g., using request
gapping.

 Rate to D never increases beyond the
sum of all rate caps.

 Requires server to assign a share of its
capacity to each upstream neighbor.

 Servers need to track neighbors and
adjust shares to server arrivals and
departures.

 Shares needs to be large enough to avoid
starvation and low enough to protect
against overload.

D

lA(1) = 200A

tA(2) = 150

lB(1) = 100B

tB(2) = 75

75

150
225

Slide 10 | Volker Hilt

Loss-based Overload Control

 Server sets a “loss” rate of p% requests in
case of overload.

 Loss rate p is determined by a control
algorithm executed by D.

 Client throttles load, e.g., by drawing a
random number between 0-100.

 Server can send the same loss rate to all
neighbors, independent of their number
and load contribution.

 Loss rate needs to be adjusted if load varies.

 Servers need to adjust loss percentage
depending on the incoming load.

 Does not guarantee upper limit of load
for D.

D

lA(1) = 200A

pA(2) = 25%

lB(1) = 100B

pB(2) = 25%

25%

25%

225

Slide 11 | Volker Hilt

Window-based Overload Control

 A client is allowed to send a certain number
of requests before it needs to receive a
confirmation from the server.

 Implicit throttling since clients stop
sending if no feedback is received.

 Ensures that input buffer never overflows
if number of clients is constant.

 Requires server to assign a share of its input
buffer to each neighbor.

 Window size needs to be adjusted to the
load contributed by each neighbor and
the number of neighbors.

 Once the window size is zero, an out-of-
band message is required to restart.

D

A

ACK xx – yy
wA(2) = 5

B

ACK xx – yy
wB(2) = 2

5

2

mA(1) xx - yy

mB(1) xx - yy

12

Signal-based Overload Control

 Use the transmission of an overload indication (e.g., a 503 (Service
Unavailable) response without Retry-After header) as a signal for overload.

 After receiving an indication, the sender reduces the load to the
downstream neighbor until no more indications are received.

 A sender which has not received an overload indication 503 for a while
starts to increase the offered load until a 503 response is received or it is
forwarding at full capacity.

 A possible algorithm for adjusting traffic is additive
increase/multiplicative decrease (AIMD).

Message Prioritization

 Overload control requires a SIP server to select messages that need to be
rejected or redirected in cases of overload.

 While the selection is largely a matter of local policy the following general
rules should apply:

 Prioritize messages for ongoing transactions over messages for new
transactions.

 Preserve high-priority requests (e.g., emergency service requests) possibly
as indicated by the Resource-Priority header.

 Prioritize requests for ongoing sessions over requests that set up a new
session.

Slide 13 | 72 IETF Meeting | July 2008

Conclusion

 Draft provides a framework for the discussion of SIP overload control
mechanisms.

 Product of the SIP overload control design team.

 Minor update needed:

 Add reference to paper by Ahmed.

 Ready for WGLC?

Slide 14 | 72 IETF Meeting | July 2008

	Slide 1
	Motivation
	Overload Control
	Implicit/Explicit Overload Control
	Overload Control Model
	Hop-by-hop vs. end-to-end
	Local Overload Control
	Client-to-Server vs. Server-to-Server Communication
	Rate-based Overload Control
	Loss-based Overload Control
	Window-based Overload Control
	Signal-based Overload Control
	Message Prioritization
	Conclusion

