Design of a generic FEC API

Vincent Roca (Inria)
NWCRG Interim Meeting
Boston, September 2017



What does it mean?
® AP| compatible with MDS and non-MDS codes

® AP| compatible with fixed-rate and rateless codes

® AP| compatible with block and sliding window
codes

® AP| compatible with codes for end-to-end and in-
network re-encoding use-cases



The KEY question: why should we do it?

ease FEC-enabled software development

Oan API provides guidelines

Oa common API reduces dependencies, making it easier to
remove a codec and plug another one

ease benchmarking
Oof codes, of codecs, of full solutions

ease development of a future reference FEC codec
O(see discussion, later)



The KEY question: why should we do it? (2)

ease Iits adoption by SDO (standards developing

org.)
Oa key asset for FEC scheme adoption by an SDO!

Oin the mid-term, an open APl & open-source free codec is
benefic to everybody...

0... even to those who already have a commercial offer

because it's feasible
Owithin NWCRG, several of us developed FEC codecs / APIs



Yes, it’s feasible

we (Inria) did it
Opublic OpenFEC (http://www.openfec.org/) provides API for
Reed-Solomon and LDPC-Staircase

Ocommercial, non-public OpenFEC adds support for Raptor
and RLC
- adding sliding window code support (e.g., RLC) required major
evolutions of the API

but

we’re not sure it's the best AP
we'd like to have an open, standardized solution



Close-up on requirements

What does it mean that the API should be
compatible with:

MDS and non-MDS codes?
fixed-rate and rateless codes?
block and sliding window codes?

codes for end-to-end and codes for in-network re-
encoding use-cases?



Close-up 1: MDS vs. non-MDS codes

“Maximum Distance Separable” or “ideal” code

Owith a (k, n) block code, subset of k encoding symbols
out of the n possible enables to recover lost source symbols

Osaid differently, with a linear code, sub-system is non-
singular

Impact:
Oideal code:
- decoding with >= k encoding symbols always succeeds
« one knows in advance what will happen
Onon-ideal code:
 decoding with >= k encoding symbols may or not succeed

- API should enable a new decoding attempt, with additional
symbols, if more are still expected



Close-up 2: fixed rate vs. rateless codes

Is the number of repair symbols pre-defined (fixed

rate) or potentially infinite (rateless)?

OReed-Solomon, LDPC, etc. — fixed-rate
ORaptor, RLC, RLNC, etc. — rateless

consequences on API:

Ouse a function like: build repair symbol () to produce a
new repair symbol each time it’s called

Oavoid using tables of predefined size for encoding symbols
* main consequences are internal to the codec!



Close-up 3: block vs. sliding window codes

does the codec encode on a per-block basis?

\

FEC encoding for this block
, R

src pkt src pkt src pkt src pkt src pkt src pkt repair repair repair

- >
time

or with a sliding encoding window?

src pkt src pkt repair src pkt src pkt repair src pkt src pkt repair
4 4 A

>
\ Y J time

FEC encoding for this window

\ J
Y

FEC encoding for this window
\ l




Close-up 3: block vs. sliding window (2)
impact 1

O manage a known set of source symbols

 a different codec instance for each block:
create/release_codec_instance()

O continuously changing set of source symbols

* requires a single codec instance for the whole session

e add symbol to/remove symbol from coding window
(), reset coding window ()

- acallback symbol removed from coding window ()IS
needed if the coding window is totally managed by the codec

10



Close-up 3: block vs. sliding window (3)

impact 2
O decoding

- can defer decoding until a sufficient number of encoding
symbols have been received (e.g., exactly k with MDS codes),
then call finish decoding ()

- test if a block is decoded: is decoding complete ()
O decoding
- on-the-fly decoding required with
decode with new source/repair symbol ()

Oin cases, need a callback to be informed of newly
decoded symbols: decoded source symbol callback()

11



Close-up 4: end-to-end vs. in-network re-
encoding

end-to-end means:
single encoding and decoding operation
a single input flow of source symbols

network coding means:

potentially multiple in-transit re-encoding operations,
usually a single decoding operation

various forms of intra-flow / inter-flow coding
several open questions in terms of symbol identification!

major consequences!

12



Close-up 4: end-to-end vs. re-encoding (2)

impact: coefficient management differs

RLNC (in-network re-encoding),

- if coefficients are computed in the codec,
get coding coefficients () helps the application to

retrieve them and copy them into the repair packet
- otherwise set coding coefficients () informs the codec
of the coefficients to use before doing encoding

RLNC (in-network re-encoding),

« set coding coefficients () informs the codec of the
coefficients carried in the packet

RLC (end2end) draft-ietf-tsvwg-rlc-fec-scheme-00:
- coefficient generation internal to the FEC codec from a “key”
carried in each repair packet

* no need for get/set coding coefficients (),
communicating the key to the codec is sufficient

13



Various additional aspects

address different decoding algorithms, even for the

same code

Othe decoding algorithm can impact the approach

- on-the-fly decoding (e.g., with iterative decoding for Raptor and

LDPC, or with sliding window codes) uses a
decode with new repair symbol () function

- otherwise a finish decoding () function launches one-time
decoding

rely on callback functions for important events

Odecoded source symbol () callback (potentially another
callback when a source symbol is about to be decoded but
calculations not yet performeds)

Oremoved from coding window () callback

FEC scheme specific control parameters

Oset/get control parameter () 14



Next steps

launch an API design team?

Owho wants to join?
Ofocusses on FEC codes only (not protocols)

work on an |-D

Owill leverage on existing codec development works (various
implementations)

* having different point of views required to improve API quality
Ois it feasible for next IETF?

15



