
1

Design of a generic FEC API

Vincent Roca (Inria)
NWCRG Interim Meeting
Boston, September 2017

What does it mean?
lAPI compatible with MDS and non-MDS codes

lAPI compatible with fixed-rate and rateless codes

lAPI compatible with block and sliding window
codes

lAPI compatible with codes for end-to-end and in-
network re-encoding use-cases

2

The KEY question: why should we do it?
l ease FEC-enabled software development

❍an API provides guidelines
❍a common API reduces dependencies, making it easier to

remove a codec and plug another one

l ease benchmarking
❍of codes, of codecs, of full solutions

l ease development of a future reference FEC codec
❍(see discussion, later)

3

The KEY question: why should we do it? (2)
l ease its adoption by SDO (standards developing

org.)
❍a key asset for FEC scheme adoption by an SDO!
❍in the mid-term, an open API & open-source free codec is

benefic to everybody…
❍… even to those who already have a commercial offer

l because it’s feasible
❍within NWCRG, several of us developed FEC codecs / APIs

4

Yes, it’s feasible
lwe (Inria) did it

❍public OpenFEC (http://www.openfec.org/) provides API for
Reed-Solomon and LDPC-Staircase

❍commercial, non-public OpenFEC adds support for Raptor
and RLC

• adding sliding window code support (e.g., RLC) required major
evolutions of the API

l but
❍we’re not sure it’s the best API
❍we’d like to have an open, standardized solution

5

Close-up on requirements
lWhat does it mean that the API should be

compatible with:
1. MDS and non-MDS codes?

2. fixed-rate and rateless codes?

3. block and sliding window codes?

4. codes for end-to-end and codes for in-network re-
encoding use-cases?

6

Close-up 1: MDS vs. non-MDS codes
l “Maximum Distance Separable” or “ideal” code

❍with a (k, n) block code, any subset of k encoding symbols
out of the n possible enables to recover lost source symbols

❍said differently, with a linear code, any sub-system is non-
singular

l impact:
❍ideal code:

• decoding with >= k encoding symbols always succeeds
• one knows in advance what will happen

❍non-ideal code:
• decoding with >= k encoding symbols may or not succeed
• API should enable a new decoding attempt, with additional

symbols, if more are still expected

7
not too complex to address

Close-up 2: fixed rate vs. rateless codes
l is the number of repair symbols pre-defined (fixed

rate) or potentially infinite (rateless)?
❍Reed-Solomon, LDPC, etc. → fixed-rate
❍Raptor, RLC, RLNC, etc. → rateless

l consequences on API:
❍use a function like: build_repair_symbol() to produce a

new repair symbol each time it’s called
❍avoid using tables of predefined size for encoding symbols

• main consequences are internal to the codec!

8
not too complex to address

Close-up 3: block vs. sliding window codes
l does the codec encode on a per-block basis?

l or with a sliding encoding window?

9

src pkt src pkt src pkt src pkt src pkt src pkt repair repair …

time

repair

FEC encoding for this block

src pkt src pkt src pkt src pkt src pkt src pktrepair repair …

time

repair

FEC encoding for this window

FEC encoding for this window

…

Close-up 3: block vs. sliding window (2)

l impact 1
❍block: manage a known set of source symbols

• a different codec instance for each block:
create/release_codec_instance()

❍sliding window: continuously changing set of source symbols
• requires a single codec instance for the whole session
• add_symbol_to/remove_symbol_from_coding_window
(), reset_coding_window()

• a callback symbol_removed_from_coding_window()is
needed if the coding window is totally managed by the codec

10

major consequences!

Close-up 3: block vs. sliding window (3)
l impact 2

❍block decoding
• can defer decoding until a sufficient number of encoding

symbols have been received (e.g., exactly k with MDS codes),
then call finish_decoding()

• test if a block is decoded: is_decoding_complete()
❍continuous decoding

• on-the-fly decoding required with
decode_with_new_source/repair_symbol()

❍in both cases, need a callback to be informed of newly
decoded symbols: decoded_source_symbol_callback()

11

Close-up 4: end-to-end vs. in-network re-
encoding

l end-to-end means:
❍single encoding and decoding operation
❍a single input flow of source symbols

l network coding means:
❍potentially multiple in-transit re-encoding operations,

usually a single decoding operation
❍various forms of intra-flow / inter-flow coding
❍several open questions in terms of symbol identification!

12

major consequences!

Close-up 4: end-to-end vs. re-encoding (2)
l impact: coefficient management differs
❍RLNC (in-network re-encoding), sender:

• if coefficients are computed in the codec,
get_coding_coefficients() helps the application to
retrieve them and copy them into the repair packet

• otherwise set_coding_coefficients() informs the codec
of the coefficients to use before doing encoding

❍RLNC (in-network re-encoding), receiver:
• set_coding_coefficients() informs the codec of the

coefficients carried in the packet

❍RLC (end2end) draft-ietf-tsvwg-rlc-fec-scheme-00:
• coefficient generation internal to the FEC codec from a “key”

carried in each repair packet
• no need for get/set_coding_coefficients(),

communicating the key to the codec is sufficient
13

Various additional aspects
l address different decoding algorithms, even for the

same code
❍the decoding algorithm can impact the approach

• on-the-fly decoding (e.g., with iterative decoding for Raptor and
LDPC, or with sliding window codes) uses a
decode_with_new_repair_symbol() function

• otherwise a finish_decoding() function launches one-time
decoding

l rely on callback functions for important events
❍decoded_source_symbol() callback (potentially another

callback when a source symbol is about to be decoded but
calculations not yet performeds)

❍removed_from_coding_window() callback

lFEC scheme specific control parameters
❍set/get_control_parameter() 14

Next steps
l launch an API design team?

❍who wants to join?
❍focusses on FEC codes only (not protocols)

lwork on an I-D
❍will leverage on existing codec development works (various

implementations)
• having different point of views required to improve API quality

❍is it feasible for next IETF?

15

