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What does it mean?
® AP| compatible with MDS and non-MDS codes

® AP| compatible with fixed-rate and rateless codes

® AP| compatible with block and sliding window
codes

® AP| compatible with codes for end-to-end and in-
network re-encoding use-cases



The KEY question: why should we do it?

ease FEC-enabled software development

Oan API provides guidelines

Oa common API reduces dependencies, making it easier to
remove a codec and plug another one

ease benchmarking
Oof codes, of codecs, of full solutions

ease development of a future reference FEC codec
O(see discussion, later)



The KEY question: why should we do it? (2)

ease Iits adoption by SDO (standards developing

org.)
Oa key asset for FEC scheme adoption by an SDO!

Oin the mid-term, an open APl & open-source free codec is
benefic to everybody...

0... even to those who already have a commercial offer

because it's feasible
Owithin NWCRG, several of us developed FEC codecs / APIs



Yes, it’s feasible

we (Inria) did it
Opublic OpenFEC (http://www.openfec.org/) provides API for
Reed-Solomon and LDPC-Staircase

Ocommercial, non-public OpenFEC adds support for Raptor
and RLC
- adding sliding window code support (e.g., RLC) required major
evolutions of the API

but

we’re not sure it's the best AP
we'd like to have an open, standardized solution



Close-up on requirements

What does it mean that the API should be
compatible with:

MDS and non-MDS codes?
fixed-rate and rateless codes?
block and sliding window codes?

codes for end-to-end and codes for in-network re-
encoding use-cases?



Close-up 1: MDS vs. non-MDS codes

“Maximum Distance Separable” or “ideal” code

Owith a (k, n) block code, subset of k encoding symbols
out of the n possible enables to recover lost source symbols

Osaid differently, with a linear code, sub-system is non-
singular

Impact:
Oideal code:
- decoding with >= k encoding symbols always succeeds
« one knows in advance what will happen
Onon-ideal code:
 decoding with >= k encoding symbols may or not succeed

- API should enable a new decoding attempt, with additional
symbols, if more are still expected



Close-up 2: fixed rate vs. rateless codes

Is the number of repair symbols pre-defined (fixed

rate) or potentially infinite (rateless)?

OReed-Solomon, LDPC, etc. — fixed-rate
ORaptor, RLC, RLNC, etc. — rateless

consequences on API:

Ouse a function like: build repair symbol () to produce a
new repair symbol each time it’s called

Oavoid using tables of predefined size for encoding symbols
* main consequences are internal to the codec!



Close-up 3: block vs. sliding window codes

does the codec encode on a per-block basis?
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Close-up 3: block vs. sliding window (2)
impact 1

O manage a known set of source symbols

 a different codec instance for each block:
create/release_codec_instance()

O continuously changing set of source symbols

* requires a single codec instance for the whole session

e add symbol to/remove symbol from coding window
(), reset coding window ()

- acallback symbol removed from coding window ()IS
needed if the coding window is totally managed by the codec
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Close-up 3: block vs. sliding window (3)

impact 2
O decoding

- can defer decoding until a sufficient number of encoding
symbols have been received (e.g., exactly k with MDS codes),
then call finish decoding ()

- test if a block is decoded: is decoding complete ()
O decoding
- on-the-fly decoding required with
decode with new source/repair symbol ()

Oin cases, need a callback to be informed of newly
decoded symbols: decoded source symbol callback()
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Close-up 4: end-to-end vs. in-network re-
encoding

end-to-end means:
single encoding and decoding operation
a single input flow of source symbols

network coding means:

potentially multiple in-transit re-encoding operations,
usually a single decoding operation

various forms of intra-flow / inter-flow coding
several open questions in terms of symbol identification!

major consequences!
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Close-up 4: end-to-end vs. re-encoding (2)

impact: coefficient management differs

RLNC (in-network re-encoding),

- if coefficients are computed in the codec,
get coding coefficients () helps the application to

retrieve them and copy them into the repair packet
- otherwise set coding coefficients () informs the codec
of the coefficients to use before doing encoding

RLNC (in-network re-encoding),

« set coding coefficients () informs the codec of the
coefficients carried in the packet

RLC (end2end) draft-ietf-tsvwg-rlc-fec-scheme-00:
- coefficient generation internal to the FEC codec from a “key”
carried in each repair packet

* no need for get/set coding coefficients (),
communicating the key to the codec is sufficient
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Various additional aspects

address different decoding algorithms, even for the

same code

Othe decoding algorithm can impact the approach

- on-the-fly decoding (e.g., with iterative decoding for Raptor and

LDPC, or with sliding window codes) uses a
decode with new repair symbol () function

- otherwise a finish decoding () function launches one-time
decoding

rely on callback functions for important events

Odecoded source symbol () callback (potentially another
callback when a source symbol is about to be decoded but
calculations not yet performeds)

Oremoved from coding window () callback

FEC scheme specific control parameters

Oset/get control parameter () 14



Next steps

launch an API design team?

Owho wants to join?
Ofocusses on FEC codes only (not protocols)

work on an |-D

Owill leverage on existing codec development works (various
implementations)

* having different point of views required to improve API quality
Ois it feasible for next IETF?
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