
Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

OS implementation discussion

Sébastien Barré and Costin Raiciu

July 24th, 2010

MPTCP implementors workshop - Maastricht

S. Barré, C. Raiciu OS implementation discussion 1 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

1 Overview of current design in Linux
Architecture
Packet Sending
Packet Receiving

2 Challenges for MPTCP Implementations

3 What is there/missing in the current implementation

S. Barré, C. Raiciu OS implementation discussion 2 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Architecture

Applications

Networking stack

socket

master subsock

src : A1 dst : B1
sp:x dp : y

src : A1 dst : B1
sp: x dp : y

path index: 1

multi-path control block

slave subsock slave subsock slave subsock

src : A2 dst : B1
sp: x dp : y

path index: 2

src : A1 dst : B2
sp: x dp : y

path index: 3

src : A2 dst : B2
sp: x dp : y

path index: 4

DATA DATA DATA DATA

S. Barré, C. Raiciu OS implementation discussion 3 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Overview of Linux TCP Stack: Packet Sending

Standard TCP: send syscall
1 Are there free send buffers? If not, wait.
2 Copy data from user space and
3 Create skb(s), add them to send buffer.
4 Send packets out if allowed by cwnd and rwnd

Standard TCP: ack reception
1 Update local data structures: snd.una, cwnd, rcvwnd, etc.
2 Fast retransmit if necessary
3 Send packets from send buffer as allowed by cwnd/rwnd

S. Barré, C. Raiciu OS implementation discussion 4 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP:Packet Sending (conceptual)

Multipath TCP: send syscall
1 Are there free send buffers? If not, wait.
2 Copy data from user space to a connection-level buffer.
3 If there are subflows available, do immediately send data
4 Create skb(s), send data

Multipath TCP: ack reception
1 Update local data structures: snd.una, cwnd, rcvwnd, etc.
2 Fast retransmit if necessary
3 Create skb(s) and send them as allowed by cwnd/rwnd

S. Barré, C. Raiciu OS implementation discussion 5 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP:Packet Sending (single MSS)

Multipath TCP: send syscall
1 Are there free send buffers? If not, wait.
2 Copy data from user space and create skb(s) with min(MSS)
3 Add skbs to a connection-level skb queue.
4 If there are subflows available, do immediately send data to

those subflows
5 Send packets out, also moving skb(s) into subflow-level send

queue.

Multipath TCP: ack reception
1 Update local data structures: snd.una, cwnd, rcvwnd, etc.
2 Fast retransmit if necessary
3 Take skb(s) from connection-level queue and send them as

allowed by cwnd/rwnd

S. Barré, C. Raiciu OS implementation discussion 6 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP: Packet Sending (current solution)

Multipath TCP: send syscall
1 Are there free send buffers? If not, wait.
2 Use scheduler to decide which subflow send buffer should

receive user data
3 Copy data from user space and
4 Create skb(s), add them to send buffer.
5 Send packets out if allowed by cwnd and rwnd

Standard TCP: ack reception
1 Update local data structures: snd.una, cwnd, rcvwnd, etc.
2 Fast retransmit if necessary
3 Send packets from send buffer as allowed by cwnd/rwnd
4 Might have to “take” packets from another subflow’s send

buffer.

S. Barré, C. Raiciu OS implementation discussion 7 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP: Packet Scheduler

Figure: Send buffer representation

S. Barré, C. Raiciu OS implementation discussion 8 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

TCP sending buffers

Must be just big enough to be able to feed a new segment to
the network whenever the congestion window is opened.

Without loss, this means that the sending buffers must have
the size of a BDP (bandwidth-delay product), that is, cwnd.

With single loss, and SACK, it must be able to feed another
BDP, where the BDP is the amount of bytes transmitted
between the fast retransmit and the corresponding
acknowledgement.

TCP send buffer tuning

With single flow TCP, sndbuf = 2 ∗max(cwnd)

See Semke,Mahdavi and Mathis, Automatic TCP Buffer tuning, CCR, 1998
S. Barré, C. Raiciu OS implementation discussion 9 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP: Size of the send buffers

They must be of same height to achieve maximum path utilization:

Figure: Send buffer representation

S. Barré, C. Raiciu OS implementation discussion 10 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

re-scheduling

When path properties change, a subflow can suddenly be
flushed and connection-level reordering happens then.

As long as a segment has never been transmitted, it can be
moved around, although this has a cost.

Let’s do it, when necessary only.

Rescheduling policy

if ∃ subflow i such that cwnd closed, sndwnd open and ∃ subflow
j such that cwnd open, sndwnd closed then reschedule.

S. Barré, C. Raiciu OS implementation discussion 11 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

re-scheduling

Figure: The subsocket write queue

S. Barré, C. Raiciu OS implementation discussion 12 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Estimating the bandwidth

We could be tempted to use BW ≃
cwnd

SRTT
. However this has

just not the right granularity:

cwnd changes at every ack. The experienced throughput is
better evaluated with a mean value of cwnd, instead of its
instantaneous value.
We thus estimate the bandwidth each time a cwnd is flushed.
Similar approach is used for receiver-side RTT estimation.

S. Barré, C. Raiciu OS implementation discussion 13 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Overview of Linux TCP Stack: Packet Receiving

Standard TCP: packet reception
1 Is segment in window? If not, send ACK, drop segment
2 Is this the next expected segment? If yes, add to receive buffer
3 Segment out of order.Is it the biggest in the ofo queue?

Yes: Insert at the end of ofo queue

No: Linear walk of ofo queue to find gap.Gap filled? Move

segments to receive buffer.

Standard TCP: recv syscall
1 Is there available in order data? If not, wait
2 Copy in-order data from receive buffer to user space.
3 Free receive buffer

S. Barré, C. Raiciu OS implementation discussion 14 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP: Packet Receiving (conceptual)

Multipath TCP: packet reception
1 Is segment in subflow window and connection level window? If

not, send ACK, drop segment
2 Is this the next expected segment? If yes, add to connection

level receive buffer.
3 Segment out of order.Is it the biggest in the ofo queue?

Yes: Insert at the end of ofo queue

No: Linear walk of ofo queue to find gap. Gap filled? Move

segments to connection level receive buffer.

Multipath TCP: recv syscall
1 Is there available in order data? If not, wait
2 Copy in-order data from receive buffer to user space.
3 Free receive buffer

S. Barré, C. Raiciu OS implementation discussion 15 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

TCP receive buffers

In the past, receive buffers were fixed to a large value

But if the application slowly asks for data, that data wastes
memory ressources.

If the BDP is very large and the application is fast, then the
receive buffer may become too small.

TCP receive buffer tuning

With single flow TCP, rcvbuf = 2 ∗max(BW ∗ estRTT )

See Fisk, Mike and Feng, Dynamic Right-sizing in TCP, 2001
S. Barré, C. Raiciu OS implementation discussion 16 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Multipath TCP: More buffers needed

For each subflow, we may need to buffer data until the slowest
subflow has finished a fast retransmit:
BW ∗maxsubflows(estRTT )

MPTCP receive buffer tuning

With multipath TCP,
rcvbuf = 2 ∗

∑
subflows

BW ∗maxsubflows (estRTT )

S. Barré, C. Raiciu OS implementation discussion 17 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Computing the receive window

With single path, the receive window represents a portion of
the sequence number space.

With multiple paths, that would create “network-deadlocks”.
Example:

One subflow dies, so we reinject data on another subflow.
But that other subflow has currently a zero window, because
the receive buffers are full.
The receiver waits for those segments to reopen the window.
The sender wait that the window is reopened before to send
the reinjected segments.

S. Barré, C. Raiciu OS implementation discussion 18 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Architecture
Packet Sending
Packet Receiving

Computing the receive window

So we redefine the receive window as a portion of the Data

Sequence Numbers space.

We then announce the same window on all subflows.

It is computed based on the available aggregate receive buffer.

data can be (re)transmitted on any subflow, as long as it fits
into the most recently received receive window.

S. Barré, C. Raiciu OS implementation discussion 19 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

1 Overview of current design in Linux
Architecture
Packet Sending
Packet Receiving

2 Challenges for MPTCP Implementations

3 What is there/missing in the current implementation

S. Barré, C. Raiciu OS implementation discussion 20 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Waking up the application correctly

Many applications will die if you wake them up from select(),
then do not give anything to eat upon read().

stdTCP wakes up when in-order data arrives.

MPCTP must wake up when in-order DSNs arrives.

need to either

move segments to the connection-level receive queue as soon
as they are received.
Defer segment reception until the application needs it, but
track the arrival of next DSN.

S. Barré, C. Raiciu OS implementation discussion 21 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Unblocking subflows

stdTCP checks if any data needs to be sent whenever an ack
is received.

due to the shared receive window, MPTCP must do that
check, on all subflows.

A received ack can open the sndwnd of another subflow.

S. Barré, C. Raiciu OS implementation discussion 22 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Receiving the JOIN option

Each MPCTP master socket must somehow behave as if it
were in LISTEN state.

Implies much code taken from listening sockets, but tailored
to mptcp needs.

We currently manage a list of pending minisocks attached to
the mpcb.

We must change the lowest level TCP receive function, and
check there the presence of the join option. That could be
critical for OS insertion.

S. Barré, C. Raiciu OS implementation discussion 23 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Connection-level acks

We need to maintain something similar to a sack-block list.

But probably need for this can be removed if DATA ack
option is mandatory.

S. Barré, C. Raiciu OS implementation discussion 24 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Efficient data structures

ofo queue will often be much more out-of-order than stdTCP.

If simple list is used, we may need to traverse it very often,
and it can be long.

This is done with socket locked, so can delay the
acknowledgement of further received segments.

Probably some structure enabling binary search should be
used.

S. Barré, C. Raiciu OS implementation discussion 25 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

What is there in the current implementation

Fall back to legacy TCP.

Can traverse middleboxes that rewrite the ISN. (subflow seq is
relative)

Supports TSO. (thanks to proper mapping management)

receive window relative to DSNs.

Quite heavy change in implementation !
example: ack received on one subflow can trigger data sending
on another subflow.

options: MPC (mod), JOIN, DSN (mod), ADD ADDR
(without port option).

Scheduler tries to fill all pipes.

S. Barré, C. Raiciu OS implementation discussion 26 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

TODO (to support draft)

IPv6 support. Shim6 is supported, but cannot be used
together with v4.

Connection-level FIN. Currently communication terminates
when FIN exchange happens on last subflow.

random generation of token. Currently incremented variable.

SYN does not occupy DSN seqnum space, but FIN does.

Use largest receive window across subflows. Currently we use
the most recently advertised receive window.

S. Barré, C. Raiciu OS implementation discussion 27 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

TODO - options

MPC option:

IDSN always 0.
No echoing in the SYN/ACK

DSN is 4 bytes long, not 8, and not randomized, no CRC.

Data Ack: currently subflow ack translated into data ack by
receiver.

Data FIN: currently FIN on all subflows plays the role of
DATA FIN.

RemoveAddr

MPFail

S. Barré, C. Raiciu OS implementation discussion 28 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

TODO - OS features

DMA support

TCP fast path - translated to MPCTP

SMP optimizations.

SYN cookies

S. Barré, C. Raiciu OS implementation discussion 29 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Amount of changes to current stack

file + -

net/ipv4/mtcp.c 2163 0
net/ipv4/mtcp pm.c 1207 0
include/net/mtcp.h 371 0
include/net/mtcp pm.h 80 0
total 3821 0

net/ipv4/tcp.c 930 45
net/ipv4/tcp input.c 860 70
net/ipv4/tcp output.c 590 87
inlude/net/tcp.h 176 13
net/ipv4/tcp ipv4.c 71 15
include/linux/tcp.h 69 23
net/ipv4/tcp minisocks.c 35 5
include/net/request sock.h 16 0
total 2747 258

S. Barré, C. Raiciu OS implementation discussion 30 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

Summary

Conceptually, there are few simple changes needed to
implement multipath TCP

In practice, though, we must deal with stacks optimized for
single-path in many ways.

Our prototype uses a lot of existing code but it can be
improved to use even more.

A lot of challenges ahead to achieve performance:

Data structures and algorithms tailored for MPTCP (e.g.
global receive buffer).
Flow to core affinity issues.
The ability to use hardware accelerations (TSO, LRO).

S. Barré, C. Raiciu OS implementation discussion 31 / 32



Overview of current design in Linux
Challenges for MPTCP Implementations

What is there/missing in the current implementation

For more information:

To check the status of this implementation, and future
(working) demos of it:

http://inl.info.ucl.ac.be/mptcp

S. Barré, C. Raiciu OS implementation discussion 32 / 32

http://inl.info.ucl.ac.be/mptcp

	Overview of current design in Linux
	Architecture
	Packet Sending
	Packet Receiving

	Challenges for MPTCP Implementations
	What is there/missing in the current implementation

