
Compute-First
Networking (CFN)

Dirk Kutscher

Inspired by Dave Oran, Jianfei He, Cedric Westphal, Lixia Zhang, Jeff Burke, Eve Schooler
and many others

Cannot Leverage Computation
in Networks Today

• Significant advances in making computation available,
affordable, programmable

• Virtualization: big leaps from host virtualisation to unikernels,
lambda expression evaluation engines

• Application layer frameworks for data processing,
microservice architectures, virtualized network automation

• Networking is lacking behind

• Connection-based communication and security model:
cannot introduce computation without breaking security and
introducing significant overhead

• IP address-based communication: leads to static and difficult
to manage networked computation (“service function
chaining”) — not applicable to dynamic, mobile environments

• No concept for computation on data plane: leads to complex
orchestration and management frameworks

!2

AmirMC

Extended AR

!3

Lemuel Soh, Jeff Burke, Lixia Zhang; Supporting Augmented Reality (AR): Looking Beyond Performance;
ACM SIGCOMM 2018 Workshop on Virtual Reality and Augmented Reality (VR/AR Network 2018)

Upstream Data Processing

!4

Also cf. Srikathyayani Srikanteswara, Jeff Foerster, Eve Schooler:
ICN-WEN Information Centric-Networking in Wireless Edge Networks;
Presentation at ICNRG@IETF-98, March 2017
https://www.ietf.org/proceedings/98/slides/slides-98-icnrg-information-centric-networking-in-wireless-edge-networks-eve-schooler-00.pdf

Different Perspectives on
Compute & Networking

(Virtualized) Compute Servers in Networks Networked Computations

!5

Old-School In-Network-Computing

!6

Telco Core

• Virtual networks providing connectivity in private
networks (per tenant/app)

• Workload migration and upscaling

• Networking has to follow server/VM location

• Connectivity dictated by telco function requirements

• Some manual optimization (co-location, chaining)

• No automatic joint optimization

Data centers

• Virtual networks providing
connectivity in private networks (per
tenant/app)

• Workload migration and upscaling

• Networking has to follow server/VM
location

• No joint optimization

Old-School In-Network-Computing

Computing & Networking — different worlds

• Technically

• DC: Virtual servers instantiated by OpenStack — virtual network has to
connect them

• Mobile Edge: Application VM containers with overlay connection to
cloud — overlay on telco tunnelling-based mobility management

• Culturally & organizationally

• Application development: APIs treat Internet as local network —
agnostic to topology, indirect performance consequences

• Network just infrastructure

!7

CFN: Joint Optimization of
Computing and Networking
• Holistic resource management

• Network capacity

• Compute resources

• Storage

!8
(Virtualized) Compute Servers in Networks Networked Computations

• Multi-dimensional requirements/
preferences sets

• App developer

• User

• Network operator

Previous Work

• Compute servers (physical or virtual)

• Stream processing

• Microservice architectures

• RPC, CORBA

• Active Networking

!9

In-Network Computing
With Client-Server Protocols

• Overlays

• Connection-based security

• Client-server / broker-based

• Limited Scalability

• Pub-sub distribution to many clients
through single-server bottleneck

• Limited efficiency

• Cannot share data directly

• Limited performance and robustness

• Network cannot assist data dissemination

• Compute cannot consider network conditions

Adding a little computation to a data kiosk system is not exactly distributed computing

!10

Joint Optimization of Networking
and Computing Resources

• Historically, network was engineered to provide connectivity between compute servers

• VLANs, tunnels, overlays

• Network: circuit, pipes between computations

• Assumption: servers, network functions are fixed – network has to adapt

• CFN perspective

• Do not require fixed locations of data and computation

• Can lay out processing graphs flexibly – meeting requirements optimally

• Sometimes we can move functions (close to big data assets)

• At other times we gradually move data where it is needed (e.g., where specific computations run)

• Conditions may change dynamically and constantly: CFN network to adapt to application
requirements, network conditions etc.

!11

Serverless CFN
• Serverless does not mean „no servers“

• It means decoupling the execution from specific server platforms

• It also does not mean „no state“

• It means application state lives independent of function instance

• Powerful concept for CFN

• We can position stateless functions where needed (close to user,
following the user etc.) – guaranteeing low latency, good
scalability etc.

• State can be kept somewhere else – in KV stores, in a
synchronized set of app components

• A new instance of a stateless function can access (and
potentially modify) that state

• Function instantiations would follow REST principles

!12

Serverless/
Stateless
Functions

KV Store
for reliable

application state
keeping

Serverless CFN
• Serveless functions can follow users as needed

• Pro-active instantiation, even pro-active invoking (and result caching)

• Pro-active resolution of dependencies (other functions, input data)

• Session state can be kept independent

• But at convenient locations in the network

• KV stores can be centralized DB or distributed system – does not
matter

• Function instances can be shared (invoked) by many users

• Some data (including computation results) can be shared

by multiple users

• Overall CFN can optimize in several dimensions

• Move stateless functions close to user

• Have working set of relevant data available with low latency access

• Improve throughput by cloning stateless functions and enabling
parallel execution, seamless handover etc.

• Pro-actively move functions/data in times of imminent network.
disruptions

!13

Serverless/
Stateless
Functions

KV Store
for reliable

application state
keeping

This is what we mean by joint optimization!

Data Logistics in CFN
• Constantly moving around session state and function

parameters could be costly

• Yes, that‘s why CFN should have intrinsic mechanisms to
support this

• Accessing data by name & caching data in the network

• Frequently used data objects are automatically available
close to user (or any functions that needs them)

• Objects can be replicated as needed and forwarding
can adapt (joint optimization...)

• Transparent service to functions (i.e., they don‘t 
have to search for data etc.)

• Homoiconicity: function code is data

• Same access principles and mechanisms

• Same cacheability and efficiency gains

!14

Serverless/
Stateless
Functions

KV Store
for reliable

application state
keeping

Cloud Backend/
Function Store

CFN Joint Optimization
• In a dynamic, multi-tenant

system

• With unpredictable load on
networks and compute notes

• Without being able to predict
effects precisely

• Could be an NP-complete
problem

• At least not likely to scale

!15

CFN Empowered Data Plane
• Concept of CFN Data Plane: empower data plane to

support optimal app installation and function execution

• Control/feedback loops that consider computing and
networking resources (joint optimization...)

• Enable network to react to congestion, 
dynamic load by making smart 
forwarding decisions, restructuring 
forwarding graphs etc.

• Does not exclude operator policies and corresponding
configurations

• Need to find good balance between in-band control
and orchestration

• But don‘t build a system that requires orchestration for
everything

!16

CFN
Node

CFN
Node

CFN
Node

CFN
Node

CFN
Node

CFN Data Plane
Moving some functions from overlay (or app layer) to network layer

• Load balancing

• Extend forwarder load-balancing for forwarding computation requests

• Holistic view on load — server load and network load

• Failure resiliency

• Routing state for multiple instances of a function in the network

• Do fail-over implicitly through forwarding (and forwarding strategies)

• Result sharing and dissemination strategies

• Caching computation results

• Pub-sub

!17

CFN Protocols vs. Platforms

• Like to think that CFN is platform-agnostic

• Could contradict with code mobility features

• Might have to converge on sandbox for common classes of
functions

• Maybe still allowing for “bare metal”, specific HW platforms…

!18

Edge PlatformMobile Phone Internet Data Center

Application
Server

AR UX

Preserving Privacy
• Trustable platforms will be critical for many

applications

• Application will not want to run software on
telco-operator platforms they cannot trust

• Users would not want to use the system
without any assurance of data protection

• Two important required features:

• Protocol and data security & privacy
(later)

• Trusted Execution Environments (TEEs)

!19

Protocol Security

• Connection security vs. Dynamic computation in a
network

• End-to-end transport semantics vs. end-to-end trust in
data and computation results

!20

Running Code

“Best Technical Contribution Award” at China's First MEC Open Platform
Hackathon hosted in Beijing on Sept. 18, 2018

!21

