
Compute-First 
Networking (CFN)

Dirk Kutscher

Inspired by Dave Oran, Jianfei He, Cedric Westphal, Lixia Zhang, Jeff Burke, Eve Schooler 
and many others



Cannot Leverage Computation 
in Networks Today

• Significant advances in making computation available, 
affordable, programmable 

• Virtualization: big leaps from host virtualisation to unikernels, 
lambda expression evaluation engines


• Application layer frameworks for data processing, 
microservice architectures, virtualized network automation


• Networking is lacking behind 

• Connection-based communication and security model: 
cannot introduce computation without breaking security and 
introducing significant overhead


• IP address-based communication: leads to static and difficult 
to manage networked computation (“service function 
chaining”) — not applicable to dynamic, mobile environments


• No concept for computation on data plane: leads to complex 
orchestration and management frameworks
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Extended AR
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Lemuel Soh, Jeff Burke, Lixia Zhang; Supporting Augmented Reality (AR): Looking Beyond Performance;
ACM SIGCOMM 2018 Workshop on Virtual Reality and Augmented Reality (VR/AR Network 2018)



Upstream Data Processing
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Also cf. Srikathyayani Srikanteswara, Jeff Foerster, Eve Schooler:
ICN-WEN Information Centric-Networking in Wireless Edge Networks;
Presentation at ICNRG@IETF-98, March 2017
https://www.ietf.org/proceedings/98/slides/slides-98-icnrg-information-centric-networking-in-wireless-edge-networks-eve-schooler-00.pdf



Different Perspectives on 
Compute & Networking

(Virtualized) Compute Servers in Networks Networked Computations
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Old-School In-Network-Computing
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Telco Core 

• Virtual networks providing connectivity in private 
networks (per tenant/app)


• Workload migration and upscaling


• Networking has to follow server/VM location


• Connectivity dictated by telco function requirements


• Some manual optimization (co-location, chaining)


• No automatic joint optimization 

Data centers 

• Virtual networks providing 
connectivity in private networks (per 
tenant/app)


• Workload migration and upscaling


• Networking has to follow server/VM 
location


• No joint optimization



Old-School In-Network-Computing

Computing & Networking — different worlds 

• Technically 

• DC: Virtual servers instantiated by OpenStack — virtual network has to 
connect them


• Mobile Edge: Application VM containers with overlay connection to 
cloud — overlay on telco tunnelling-based mobility management


• Culturally & organizationally 

• Application development: APIs treat Internet as local network — 
agnostic to topology, indirect performance consequences


• Network just infrastructure
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CFN: Joint Optimization of  
Computing and Networking  
• Holistic resource management


• Network capacity


• Compute resources


• Storage 
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(Virtualized) Compute Servers in Networks Networked Computations

• Multi-dimensional requirements/
preferences sets


• App developer


• User


• Network operator



Previous Work

• Compute servers (physical or virtual)


• Stream processing


• Microservice architectures


• RPC, CORBA


• Active Networking
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In-Network Computing 
With Client-Server Protocols

• Overlays


• Connection-based security


• Client-server / broker-based


• Limited Scalability


• Pub-sub distribution to many clients 
through single-server bottleneck

• Limited efficiency


• Cannot share data directly


• Limited performance and robustness


• Network cannot assist data dissemination


• Compute cannot consider network conditions


Adding a little computation to a data kiosk system is not exactly distributed computing
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Joint Optimization of Networking 
and Computing Resources 

• Historically, network was engineered to provide connectivity between compute servers


• VLANs, tunnels, overlays


• Network: circuit, pipes between computations


• Assumption: servers, network functions are fixed – network has to adapt


• CFN perspective


• Do not require fixed locations of data and computation


• Can lay out processing graphs flexibly – meeting requirements optimally


• Sometimes we can move functions (close to big data assets)


• At other times we gradually move data where it is needed (e.g., where specific computations run)


• Conditions may change dynamically and constantly: CFN network to adapt to application 
requirements, network conditions etc. 
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Serverless CFN
• Serverless does not mean „no servers“ 

• It means decoupling the execution from specific server platforms


• It also does not mean „no state“


• It means application state lives independent of function instance


• Powerful concept for CFN 

• We can position stateless functions where needed (close to user, 
following the user etc.) – guaranteeing low latency, good 
scalability etc.


• State can be kept somewhere else – in KV stores, in a 
synchronized set of app components


• A new instance of a stateless function can access (and 
potentially modify) that state


• Function instantiations would follow REST principles
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Serverless CFN
• Serveless functions can follow users as needed 

• Pro-active instantiation, even pro-active invoking (and result caching)


• Pro-active resolution of dependencies (other functions, input data)


• Session state can be kept independent 

• But at convenient locations in the network


• KV stores can be centralized DB or distributed system – does not 
matter


• Function instances can be shared (invoked) by many users 

• Some data (including computation results) can be shared 

by multiple users 

• Overall CFN can optimize in several dimensions


• Move stateless functions close to user


• Have working set of relevant data available with low latency access


• Improve throughput by cloning stateless functions and enabling 
parallel execution, seamless handover etc.


• Pro-actively move functions/data in times of imminent network. 
disruptions
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This is what we mean by joint optimization!



Data Logistics in CFN
• Constantly moving around session state and function 

parameters could be costly


• Yes, that‘s why CFN should have intrinsic mechanisms to 
support this


• Accessing data by name & caching data in the network


• Frequently used data objects are automatically available 
close to user (or any functions that needs them)


• Objects can be replicated as needed and forwarding 
can adapt (joint optimization...)


• Transparent service to functions (i.e., they don‘t 
have to search for data etc.)


• Homoiconicity: function code is data


• Same access principles and mechanisms


• Same cacheability and efficiency gains
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CFN Joint Optimization
• In a dynamic, multi-tenant 

system


• With unpredictable load on 
networks and compute notes


• Without being able to predict 
effects precisely


• Could be an NP-complete 
problem


• At least not likely to scale
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CFN Empowered Data Plane
• Concept of CFN Data Plane: empower data plane to 

support optimal app installation and function execution 

• Control/feedback loops that consider computing and 
networking resources (joint optimization...)


• Enable network to react to congestion, 
dynamic load by making smart 
forwarding decisions, restructuring 
forwarding graphs etc.


• Does not exclude operator policies and corresponding 
configurations 

• Need to find good balance between in-band control 
and orchestration


• But don‘t build a system that requires orchestration for 
everything
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CFN Data Plane
Moving some functions from overlay (or app layer) to network layer 

• Load balancing


• Extend forwarder load-balancing for forwarding computation requests


• Holistic view on load — server load and network load


• Failure resiliency


• Routing state for multiple instances of a function in the network


• Do fail-over implicitly through forwarding (and forwarding strategies)


• Result sharing and dissemination strategies


• Caching computation results


• Pub-sub
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CFN Protocols vs. Platforms

• Like to think that CFN is platform-agnostic


• Could contradict with code mobility features


• Might have to converge on sandbox for common classes of 
functions


• Maybe still allowing for “bare metal”, specific HW platforms…
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Preserving Privacy
• Trustable platforms will be critical for many 

applications


• Application will not want to run software on 
telco-operator platforms they cannot trust


• Users would not want to use the system 
without any assurance of data protection


• Two important required features:


• Protocol and data security & privacy 
(later)


• Trusted Execution Environments (TEEs)
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Protocol Security

• Connection security vs. Dynamic computation in a 
network


• End-to-end transport semantics  vs. end-to-end trust in 
data and computation results 
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Running Code

“Best Technical Contribution Award” at China's First MEC Open Platform 
Hackathon hosted in Beijing on Sept. 18, 2018
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