SIP Overload Control IETF Design Team Summary

Eric Noel Carolyn Johnson AT&T Labs

2007 AT&T Knowledge Ventures. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Knowledge Ventures.

Introduction

- The IETF has chartered a design team to perform research on SIP overload controls and lay the groundwork for possible standardization:
 - The design team was chaired by Alcatel-Lucent,
 - It included members from AT&T Labs, Bell Labs/Alcatel-Lucent, Columbia University, Sonus Networks, Nortel, British Telecom,
- The team has developed four independent simulation tools and has conducted extensive simulations:
 - Confirm the problem of the current SIP specification,
 - Evaluate potential solutions in steady-state and transient simulations,
- Close collaboration between AT&T labs (Eric Noel, Carolyn Johnson), Alcatel-Lucent (Volker Hilt, Fangzhe Chang), Columbia University (Charles Shen) and Sonus Networks (Ahmed Abdelal).

SIP Overload Control Design Team

- Team Members:
 - Eric Noel, Carolyn Johnson (AT&T Labs)
 - Volker Hilt, Fangzhe Chang (Bell Labs/Alcatel-Lucent)
 - Charles Shen, Henning Schulzrinne (Columbia University)
 - Ahmed Abdelal, Tom Phelan (Sonus Networks)
 - Mary Barnes (Nortel)
 - Jonathan Rosenberg (Cisco)
 - Nick Stewart (British Telecom)
- Four independent simulation tools:
 - AT&T Labs, Bell Labs/Alcatel-Lucent, Columbia University, Sonus Networks
- Bi-weekly conference calls.

Motivation

- Users expect VoIP/SIP networks to perform as well as the existing PSTN. So efficient handling of overload conditions is crucial to cope with, for instance:
 - Call floods: emergencies, media stimulated calling, ...
 - Decrease in processing capacity: component failures, ...
 - Avalanche restart: recovery from failures (i.e. power outage), provisioning errors, ...

- Researchers have demonstrated VoIP/SIP networks can experience congestion collapse,
- SIP retransmission algorithm and limited overload control capability are the main causes,
- Therefore a SIP overload control mechanism that provides high throughput during times of overload is needed.

Benchmark Model

- All proxies modeled as a queuing system:
 - Message rate of 500/sec for accepted messages, 3,000/sec for rejected INVITEs,
 - Queue size: 500 messages
 - Internal overload control considered
- Media path congestion is not considered.
- We focused on server-to-server controls,
 - Overload controls to throttle UA's should be very different than the ones to throttle servers,
- Our benchmark network consisted of UA's establishing calls with one another across a network of 5 edge proxies and 2 core proxies,
 - We used the standard 7 SIP messages call model,
- All proxies were assumed to be stateful and signaling messages within the same call traverse the same set of proxies,
- To evaluate our server-to-server controls and eliminate other sources of interaction, UA's and Edge Proxies were assumed to have infinite capacity.

SIP Protocol Implementation

- SIP is an IETF standardized signaling protocol (application-layer) for creating, modifying, and terminating sessions with one or more entities.
 - SIP uses timers for application-level retransmission and message timeouts,
 - Most retransmissions timers are used for UDP only,
 - Short timer initialized to T1(500msec) is doubled every retransmission while long timer is proportional to T1 (64xT1=32sec),
- SIP provides the 503 response (Service Unavailable) for overload control. After receiving a 503 response, a proxy will:
 - Stop sending requests to this server for a number of seconds defined in the Retry-After header (if honored by recipient),
 - Retry at an alternative proxy if one is available or reject the request back to the UAC,
- Each simulation model included detailed implementation of SIP INVITE & non-INVITE client & server transaction state machines.

March 2009	Page 6	🥞 at&t

Controls Test Scenarios and Evaluation Metrics

- Overload control algorithms were evaluated under steady-state conditions,
 - For a given offered load, simulations ran until steady-state was achieved,
 - Sensitivity analysis on transmission impairments (message loss and delay), number of proxies and traffic matrix.
- Transient analysis was also considered, initially offered load consisted of a step function,
- Metrics considered were:
 - Goodput or carried load,
 - Core proxy queue and CPU utilization,
 - Convergence speed,
 - Post dial delay.

Simulation models calibration (no controls)

- Within team, two modes of operation were suggested: rejecting new INVITE's statelessly (minimal processing penalty) or statefully,
- Stateless mode of operation uncovered state transition inconsistency in RFC3261 that was resolved in parallel elsewhere (draft-sparks-sipinvfix-00.txt),
- Simulation calibration between different teams turned out to be challenging as each interpreted RFC3261 somewhat differently,
- It took ~6months for models to show a reasonable level of agreement.

Page 8

February 19 2008

Results for steady-state conditions

•

- AT&T rate & window controls:
 - Core proxies internal overload control based on queue fill,
 - Rate and window tuned to activate prior internal control limits,
 - In rate control, core proxies estimate control rate based on queue delay deviation from target and distribute allowed rates via SIP responses to edge proxies,
 - Edge proxies throttle based using an percent blocking algorithm,
 - In window control, edge proxies maintain a window of unacknowledged INIVITEs based of core proxies responses (503's shrink window 1xx & 2xx open window)
- Sonus Networks receiver & sender based controls:
 - Core proxies internal overload control adjusts allowed call rate based on CPU utilization deviation from a target value.
 - Excess calls are rejected via 503-Service Unavailable.
 - Core proxies distribute individual allowed rates to upstream proxies via SIP messages.
 - Upstream proxies adjust their throttles based on the received allowed rates.
 - In sender based control, upstream proxies dynamically adjust rates based on the overload notifications from downstream proxies (503-Service Unavailable) such that the overload notification rate converges close to a target overload notification rate.

Results for steady-state conditions

- Columbia University window-based overload control:
 - SIP session as control unit, dynamically estimated from processed SIP messages,
 - Receiver (Core Proxy) dynamically computes available window and feedback piggybacked in responses/requests,
 - Three different window adaptation algorithms:
 - CU-WIN-I: keep current estimated sessions below total allowed sessions given target delay
 - CU-WIN-II: open up the window after a new session is processed
 - CU-WIN-III: discrete version of CU-WIN-I, divided into control intervals
- Bell Labs/Alcatel Lucent loss-based overload control simulation :
 - Feedback-loop between receiver (core proxy) and sender (edge proxy).
 - Receiver driven control algorithm (estimates current processor utilization, compares to target processor utilization, multiplicative increase and decrease if loss-rate to reach target utilization).
 - Sender adjusts the load it sends to receiver based on the feedback received using percentblocking.
 - Overload control algorithms: Occupancy algorithm (OCC), ARO algorithm (ARO), improved ARO (IAR).

Results for sensitivity on transmission impairments

30

-114

- 500

1000

40

50

Results for transient conditions

Columbia University (rate and window control)

at&t

Conclusion

- With increasing size of VoIP/SIP deployment, efficient handling of overload conditions is crucial for VoIP/SIP service providers,
- IETF design team simulation results showed overload control algorithms produce stable VoIP/SIP traffic behavior and maintain high throughput under various overloads,
- Additional Info:
 - IETF draft RFC draft-hilt-soc-overload-design (V. Hilt coordinator),
 - 07'ITC20 and 09'ITC21 (E. Noel, C. Johnson),
 - ICNP'08 (V. Hilt, I. Widjaja),
 - IPTComm'08 (C. Shen, H. Schulzrinne, E. Nahum),
 - IEEE CCNC'11 (A. Abdelal, W. Matragi).