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Introduction

 The IETF has chartered a design team to perform research
on SIP overload controls and lay the groundwork for
possible standardization:

— The design team was chaired by Alcatel-Lucent,

— Itincluded members from AT&T Labs, Bell Labs/Alcatel-Lucent,
Columbia University, Sonus Networks, Nortel, British Telecom,

 The team has developed four independent simulation tools
and has conducted extensive simulations:

— Confirm the problem of the current SIP specification,

— Evaluate potential solutions in steady-state and transient
simulations,

e Close collaboration between AT&T labs (Eric Noel, Carolyn
Johnson), Alcatel-Lucent (Volker Hilt, Fangzhe Chang),

Columbia University (Charles Shen) and Sonus Networks
(Ahmed Abdelal).
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SIP Overload Control Desigh Team

e Team Members:
— Eric Noel, Carolyn Johnson (AT&T Labs)
— Volker Hilt, Fangzhe Chang (Bell Labs/Alcatel-Lucent)
— Charles Shen, Henning Schulzrinne (Columbia University)
— Ahmed Abdelal, Tom Phelan (Sonus Networks)
— Mary Barnes (Nortel)
— Jonathan Rosenberg (Cisco)
— Nick Stewart (British Telecom)

* Four independent simulation tools:

— AT&T Labs, Bell Labs/Alcatel-Lucent, Columbia University,
Sonus Networks

* Bi-weekly conference calls.




Motivation
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* Researchers have demonstrated VolP/SIP networks can
experience congestion collapse,

e SIP retransmission algorithm and limited overload control
capability are the main causes,

 Therefore a SIP overload control mechanism that provides
high throughput during times of overload is needed.




Benchmark Model

* All proxies modeled as a queuing

system:
ORI O NI T
.y — Message rate of 500/sec for accepted
\ / emT T +> | b messages, 3,000/sec for rejected
2 Core r‘ L INVITES,
Proxies —_ C “1’ “2 — Queue size: 500 messages
— Internal overload control considered
5 Edge / \ UA’s

* Media path congestion is not
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* We focused on server-to-server controls,

— Overload controls to throttle UA’s should be very different than the
ones to throttle servers,

 Our benchmark network consisted of UA’s establishing calls with
one another across a network of 5 edge proxies and 2 core
proxies,
— We used the standard 7 SIP messages call model,

* All proxies were assumed to be stateful and signaling messages
within the same call traverse the same set of proxies,

* To evaluate our server-to-server controls and eliminate other
sources of interaction, UA’s and Edge Proxies were assumed to have
infinite capacity.
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SIP Protocol Implementation
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 SIPis an IETF standardized signaling protocol (application-layer) for creating,
modifying, and terminating sessions with one or more entities.
— SIP uses timers for application-level retransmission and message timeouts,
— Most retransmissions timers are used for UDP only,
— Short timer initialized to T1(500msec) is doubled every retransmission while long timer is
proportional to T1 (64xT1=32sec),
* SIP provides the 503 response (Service Unavailable) for overload control. After
receiving a 503 response, a proxy will:

— Stop sending requests to this server for a number of seconds defined in the Retry-After header
(if honored by recipient),

— Retry at an alternative proxy if one is available or reject the request back to the UAC,

e Each simulation model included detailed implementation of SIP INVITE & non-
INVITE client & server transaction state machines.
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Controls Test Scenarios and Evaluation Metrics
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* Overload control algorithms were evaluated under steady-state
conditions,

— For a given offered load, simulations ran until steady-state was
achieved,

— Sensitivity analysis on transmission impairments (message loss and
delay), number of proxies and traffic matrix.

* Transient analysis was also considered, initially offered load
consisted of a step function,
* Metrics considered were:
— Goodput or carried load,
— Core proxy queue and CPU utilization,
— Convergence speed,
Post dial delay.




Simulation models calibration (no controls)
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* Within team, two modes of operation were

w0 Stateless 503 suggested: rejecting new INVITE’s statelessly

20 ' (minimal processing penalty) or statefully,
Lo /-/ oo gt * Stateless mode of operation uncovered state
;o 7 —a—BL SimB gput transition inconsistency in RFC3261 that was
3w 7 resolved in parallel elsewhere (draft-sparks-sip-
S oy | invfix-00.txt),

2 L e Simulation calibration between different teams

o o e awo s e o e turned out to be challenging as each

Ored 0ad (o9 interpreted RFC3261 somewhat differently,

* |ttook “6months for models to show a
reasonable level of agreement.
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Results for steady-state conditions
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Results for steady-state conditions

Columbia University

160 *  Columbia University window-based overload
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* CU-WIN-II: open up the window after a new
session is processed

e  CU-WIN-III: discrete version of CU-WIN-I,
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20 | blocking.
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Results for sensitivity on transmission impairments
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Results for transient conditions
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Conclusion

e With increasing size of VolP/SIP deployment, efficient
handling of overload conditions is crucial for VolP/SIP
service providers,

e |ETF design team simulation results showed overload
control algorithms produce stable VolP/SIP traffic
behavior and maintain high throughput under various
overloads,

e Additional Info:

— |ETF draft RFC draft-hilt-soc-overload-design (V. Hilt
coordinator),

— 07’ITC20 and 09’ITC21 (E. Noel, C. Johnson),

— ICNP’08 (V. Hilt, I. Widjaja),

— IPTComm’08 (C. Shen, H. Schulzrinne, E. Nahum),
— |EEE CCNC’11 (A. Abdelal, W. Matragi).




