
RTCWEB architecture 
Harald Alvestrand 



RTCWEB goals 

  Real Time Communication in the Browser 
  Browser to Browser is Job Number One 
  Usable by JS applications 
  Not (just) for apps we have already deployed 

  Motherhood and Apple Pie 
  Secure 
  Manageable 
  Network Friendly 







RTC is not a green field 

  Lots of protocols defined 
  Code 
  Knowledge 
  Hardware 

  Lots of stuff deployed 
  Proprietary 
  Using standard protocols internally 
  Interoperable 







  Browser environment 
  A few, massively deployed implementations 
  Scrutiny on code complexity, security, size 

  Uncontrolled LAN environment 
  All kinds of middle boxes (NAT, FW, proxy) 
  No ability to configure local network 
  Must work with zero configuration 



Function layers 

  Data transport 
  Data framing and securing 
  Data formats 
  Connection management 
  Presentation and control 
  Local system support 
draft-alvestrand-rtcweb-overview 



Data transport 

  IP (obvious) 
  ICE for establishing desire to communicate 
  Direct if possible, with TURN relay fallback 
  UDP if possible, with TCP fallback 
Controversy: 
  Whether all of ICE is appropriate 

  Draft-kaufman-rtcweb-traversal 

  Congestion control strategies (TFRC?) 



Data framing 

  RTP for media, using RTP/SAVPF profile 
  RTCP multiplexing, symmetric RTP/RTCP 
  More details 
draft-cbran-rtcweb-protocols 

draft-perkins-rtcweb-rtp-usage 
Controversial: 
  RTP multiplexing – session-per-media-stream? 
  Framing of non-media data - UDP/DCCP/

DTLS? 



Data formats 

  MTI Codec selection 
  OPUS (may be uncontroversial) 
  At least one low-quality “phone” audio codec 

Controversial: 
  Video codec status (do not discuss now) 
  Telephone events (important use case?) 
  Formats for non-media data 



Connection management 

  Clear requirement to negotiate connections 
  Legacy has SDP as “lingua franca of descriptions” 
  SDP has lots of legacy with it 

  No dominant accepted management protocol 
  Large SIP installed base – limited interoperability 
  XMPP has separate following 
  Simple use cases may be better off on proprietary 
  Gateway solutions better on browser footprint? 



Presentation and Control 

  User control over his own devices 
  Management of streams locally 
  May interact with stream control, but mostly a 

local matter – may be better addressed in 
W3C? 



Local system support functions 

Such as: 
  Echo cancellation 
  Automatic gain control 
  Camera zoom/pan/tilt 
Some aspects are inter-user and may need 

standardization. 
Others are matters of “good citizenship” (“mute 
when not speaking in large meetings”). 

For now, leave it for later. 



Summary 

  Consider the environment! 
  We have lots of things that are obvious 

  Some of these have implementations 

  We have a few known controversies 
  Need to figure out if one alternative has “rough 

consensus” and move forward 
  If no rough consensus – what do we need to test? 

  We will find more controversies over time 
Rough consensus and running code. 


