
RTCWEB architecture 
Harald Alvestrand 



RTCWEB goals 

  Real Time Communication in the Browser 
  Browser to Browser is Job Number One 
  Usable by JS applications 
  Not (just) for apps we have already deployed 

  Motherhood and Apple Pie 
  Secure 
  Manageable 
  Network Friendly 







RTC is not a green field 

  Lots of protocols defined 
  Code 
  Knowledge 
  Hardware 

  Lots of stuff deployed 
  Proprietary 
  Using standard protocols internally 
  Interoperable 







  Browser environment 
  A few, massively deployed implementations 
  Scrutiny on code complexity, security, size 

  Uncontrolled LAN environment 
  All kinds of middle boxes (NAT, FW, proxy) 
  No ability to configure local network 
  Must work with zero configuration 



Function layers 

  Data transport 
  Data framing and securing 
  Data formats 
  Connection management 
  Presentation and control 
  Local system support 
draft-alvestrand-rtcweb-overview 



Data transport 

  IP (obvious) 
  ICE for establishing desire to communicate 
  Direct if possible, with TURN relay fallback 
  UDP if possible, with TCP fallback 
Controversy: 
  Whether all of ICE is appropriate 

  Draft-kaufman-rtcweb-traversal 

  Congestion control strategies (TFRC?) 



Data framing 

  RTP for media, using RTP/SAVPF profile 
  RTCP multiplexing, symmetric RTP/RTCP 
  More details 
draft-cbran-rtcweb-protocols 

draft-perkins-rtcweb-rtp-usage 
Controversial: 
  RTP multiplexing – session-per-media-stream? 
  Framing of non-media data - UDP/DCCP/

DTLS? 



Data formats 

  MTI Codec selection 
  OPUS (may be uncontroversial) 
  At least one low-quality “phone” audio codec 

Controversial: 
  Video codec status (do not discuss now) 
  Telephone events (important use case?) 
  Formats for non-media data 



Connection management 

  Clear requirement to negotiate connections 
  Legacy has SDP as “lingua franca of descriptions” 
  SDP has lots of legacy with it 

  No dominant accepted management protocol 
  Large SIP installed base – limited interoperability 
  XMPP has separate following 
  Simple use cases may be better off on proprietary 
  Gateway solutions better on browser footprint? 



Presentation and Control 

  User control over his own devices 
  Management of streams locally 
  May interact with stream control, but mostly a 

local matter – may be better addressed in 
W3C? 



Local system support functions 

Such as: 
  Echo cancellation 
  Automatic gain control 
  Camera zoom/pan/tilt 
Some aspects are inter-user and may need 

standardization. 
Others are matters of “good citizenship” (“mute 
when not speaking in large meetings”). 

For now, leave it for later. 



Summary 

  Consider the environment! 
  We have lots of things that are obvious 

  Some of these have implementations 

  We have a few known controversies 
  Need to figure out if one alternative has “rough 

consensus” and move forward 
  If no rough consensus – what do we need to test? 

  We will find more controversies over time 
Rough consensus and running code. 


