
Encouraging bandwidth efficiency for peer-to-peer applications

Henning Schulzrinne

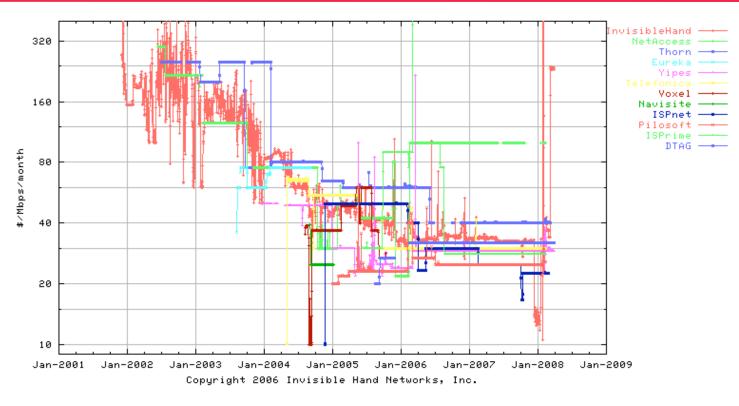
Dept. of Computer Science Columbia University New York, NY

Overview

- Video bandwidth consumption
- Cost of providing video content
- Economics
- Mechanisms
 - network topology indication
 - -scavenger service
 - indication of charge
- Problem mainly of economics
 May 28, 2008

Bandwidth consumption

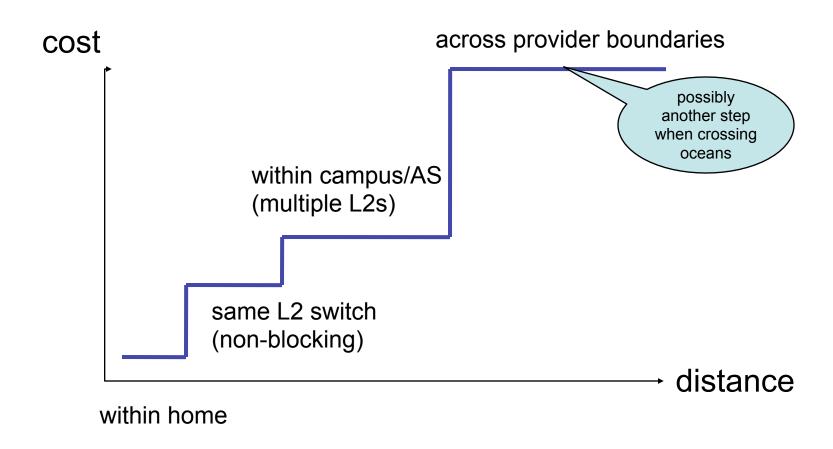
- 4 hours/day of TV @ 18 Mb/s HDTV → 972 GB/month
- Columbia University caps at 350 MB/hour ≈ 252 GB/ month


Economics of the eco system

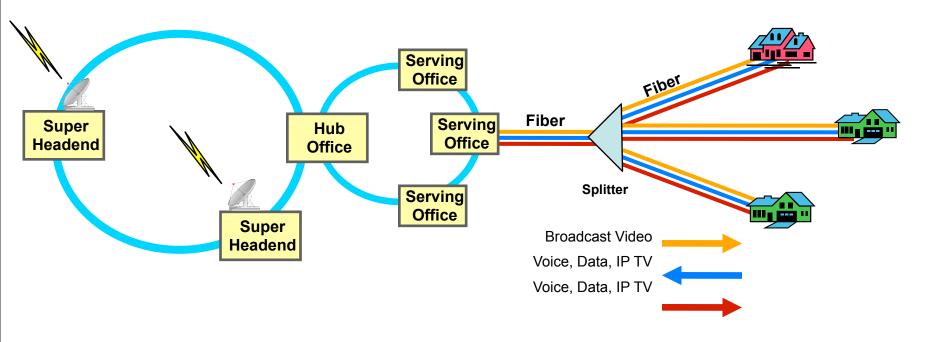
- Long term, minimize overall cost of content delivery
 - across end user, provider, ISP
 - thus, focusing only on efficiency of HTTP misses the complete story
- Components
 - media storage
 - media server bandwidth (can't serve whole ISP from one disk)
 - delivery bandwidth (upstream & downstream)
- Re-use of existing components vs. new components
 - e.g., end user DVR storage vs. dedicated cache servers
 - local bandwidth vs. wide-area bandwidth vs. content provider bandwidth
- Allow cost allocation
 - e.g., rentable caches --> both content provider and ISP benefit

Economics of bandwidth

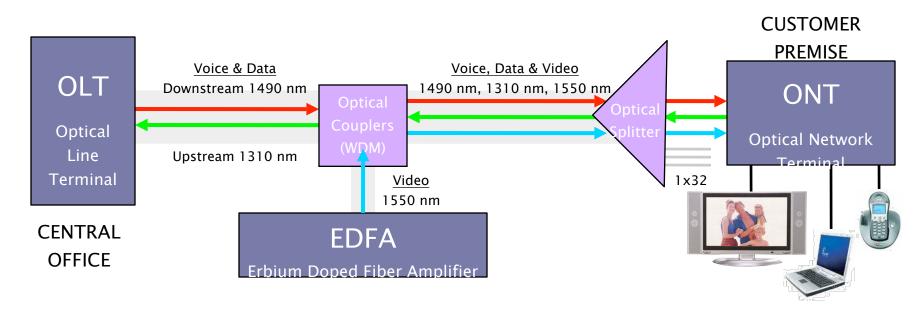
- Transit bandwidth \$40/Mb/s/month ~ \$0.125/GB
- US colocation providers charge \$0.30/GB to \$1.75/GB
 - CDNs: \$0.08 to \$0.19/GB


Cost of bandwidth

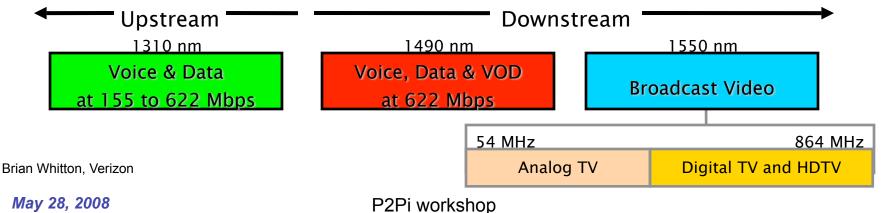
- Thus, 7 GB DVD → \$1.05
- HDTV viewing ~ \$120/month for WAN bandwidth
- Netflix postage cost: \$0.70 round-trip
- Typical PPV charges: \$4/movie (7 GB)
- Local bandwidth cost is amortization of infrastructure
 - driven by peak load, not average
- Asymmetric vs. symmetric networks


Cost for providing content

Example: FiOS TV architecture



J. Savage (Telecom ThinkTank), Nov. 2006

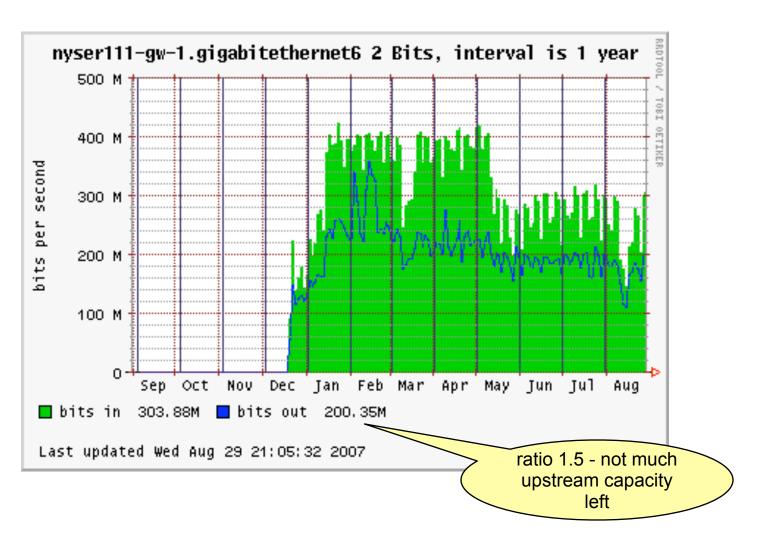

- 2 national super headends
- 9 video hub offices
- 292 video serving offices

Verizon's FTTP Architecture

Bandwidth & Services

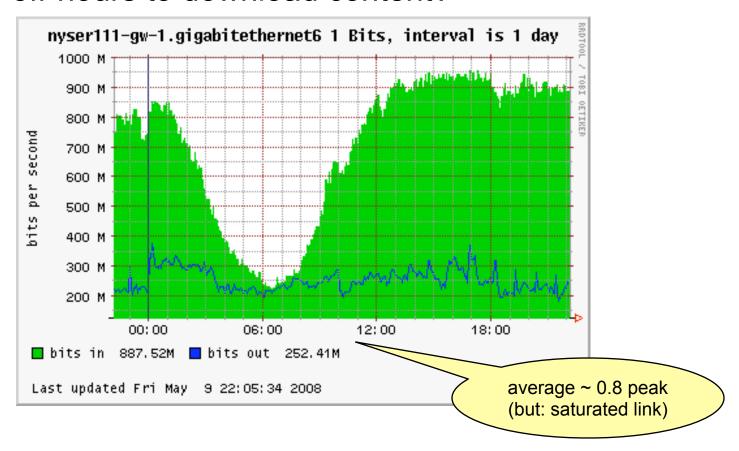
VoD requirements

short clips < 10' (long tail)


feature-length

- avoid Netflix queue
- avoid stocking 20,000
 DVDs

- Example: Superbad grossed \$33M during August 17 weekend (in US)
- = roughly 3M viewers
- = roughly 1% of US population
- ⇒ if VoD, each neighborhood has likely one copy
- 2 problems:
 - get initial copy to neighborhood
 - multicast, OTA
 - distribute in neighborhood
- only viable for top 1000 content
- need data on popularity distribution



Diurnal variation

Use off-hours to download content?

Mechanisms

- Goals and requirements
 - application neutral: not just for BitTorrent or VoD
 - no lawyers
 - no saints assume economically-rational actors
- Mechanisms
 - network proximity
 - real-time cost and charging information
 - common DiffServ code points
 - Scavenger service

Network topology discovery

Incentive:

- lower cost (later)
- better performance throughput and delay (e.g., VoIP relay node)

Indications

- AS number, ...
- symmetric vs. asymmetric bandwidth
 - · symmetric: local cache
 - asymmetric: cache in ISP network
- see p4pnet.org

Mechanisms

- separate protocol (e.g., web service)
- STUN
- DHCP (requires NAT upgrade)

Discovery

- Similar problems
 - discover network topology information server
 - STUN server
 - HELD server
 - LoST server
 - SIP local network configuration
- All likely provided by ISP
- Develop common set of discovery mechanisms
 - DHCP
 - DNS (SRV, NAPTR, …)
 - anycast

— ...

Scavenger service

- Explored by Internet2 QoS working group
- Less-than-best effort
 - lower scheduling priority than regular BE traffic
- Avoids self-interference
- Requires no admission control
- Improve RT service performance, but does not address wide-area cost issue
- Requires well-known (or discoverable) DS code point

Indication of charging

- If volume-based, need application-visible charging indication
 - "current cost of 1 GB to 128.59.16.1 is \$0.15"
 - "predicted cost in 3 hours is \$0.05"
 - "you have 47.5 GB of free local traffic left"
 - "you are currently in penalty box"
- May differ upstream vs. downstream
- Applications can then prefer local content
- or defer to later
 - "Do you want to watch the movie now (\$4) or wait until 10 pm (\$2.52)?"

DiffServ & Bandwidth charging

- Only two options:
 - limit supply of (high-priority) bandwidth ("1000 minutes of VoIP/month") OR
 - charge for bandwidth
- Probably need to differentiate "local" and "long-distance" traffic
 - see "free local calls"
- Charging exposes user to risk
 - mis-behaving application or malware
 - need SE-Linux-like capability limitation
 - DoS attacks
 - need permission-based sending

Conclusion

- Simple network mechanisms needed
 - allow applications "to do the right thing"
 - prevent self-interference
 - work for both symmetric and asymmetric networks
 - incentive: better performance or lower cost
- Local network retrieval only works for short-tail content
 - what is the fraction of bandwidth for top-1000 content?