Multipath TCP Architecture:
Towards Consensus

draft-ford-mptcp-architecture-01

Alan Ford <alan.ford@roke.co.uk>



Goals of Draft

Overview of MPTCP

e Motivation and goals for Multipath TCP
* Functional architecture

* High-level design decisions

e How components (drafts) fit together



Motivation and Functional Goals

* Increase resilience of connectivity
— => Use of multiple paths interchangeably

* Increase throughput
— => Use of multiple paths simultaneously

— Also increases efficiency of global resource
utilisation



Compatibility Goals

e Application Compatibility
— Appearance of MPTCP to the application
— Maintain APl compatibility (extensions permitted)
— Maintain regular TCP service model
e Network compatibility
— Look like regular TCP
— Traverse common middleboxes
e Compatibility with other network users
— Coexist gracefully with other TCP flows



MPTCP Functional Modules

Path Management

— Detection and use of multiple paths between
endpoints: achieved through multiple IP addresses

Packet Scheduling

— Breaking bytestream from application into segments
for transmission on subflows

Subflow Interface

— Sends scheduled packets with necessary metadata to
lower TCP layers

Congestion Control
— Managed across subflows



High-Level Design Decisions



Sequence Numbering

 Two layers of sequence numbering
— Keep each subflow-level independent
— Add mapping to data-level sequence numbering

— Full mapping of (data_seq, subflow seq, length) but
this could be implied in cases

e Reasoning
— Appear as continuous flow to middleboxes

— Allow packet loss and acknowledgement to be
attributed to the correct subflow in the case of
retransmission



Reliability

ACKs at subflow level only
Connection-level ACKs are therefore derived

Pros:
— Reduced complexity and overhead

Cons:

— If a subfow is ACKed and the data is later lost, the
connection stalls permanently
e Cases: middlebox failure; memory pressure
* Are these things we need to worry about?

Do we need an explicit connection-level ACK?



Retransmissions

Dual-level sequence numbering and subflow-level
ACKs can determine lost data

Retransmission algorithms are TBD

To maintain integrity of subflows, different data
cannot be retransmitted on previously allocated
subflow sequence space

So even if data is retransmitted on another
subflow, must also still be retransmitted on the
previous one

— This will affect optimal retransmission algorithms



Path and Connection Management

e Paths identified by IP address pairs

e MPTCP-aware applications can use a MPTCP-
specific connection identifier (analogous to
ephemeral port for demultiplexing)

e Legacy applications must be presented with a 5-
tuple — the 5-tuple of the first subflow.
Complications if this subflow closes:

— Does connection have to close?

— Note that binding to an address will not use MPTCP

— Proposal: close connection unless extended API is
used (or overridden in OS — out of scope)



Middleboxes (1)

e Dedicated section is still a TBD in the draft, but
impact is felt throughout

e Has been a factor in the protocol design so far
 But where can we draw the line?

Some examples:

 Middleboxes that prevent connections in one
direction (firewalls, NATs)

— Solved by signalling addresses



Middleboxes (2)

 Terminating middleboxes (e.g. PEPs)
— May do proactive ACKing
— May drop TCP Options
— (Fall back to behaviour as regular TCP)

e Middleboxes that care about TCP
— May change sequence numbering
— May do packet coalescing or splitting
— Do not put holes in sequence space



Other Issues in the Draft

Buffer sizes

— Optimality TBD
Signalling

— See options vs payload discussion
Support for both v4 and v6

— Uncontentious?

Congestion control

— See separate draft

Receive windows
— Per-connection only — per-subflow could lead to deadlocks



Next steps?



