ISP-Aided Neighbor Selection for P2P Systems

Vinay Aggarwal vinay@net.t-labs.tu-berlin.de

Anja Feldmann, Obi Akonjang, Christian Scheideler (TUM)

Deutsche Telekom Laboratories TU Berlin, Germany

P2P traffic

- □ >50% of Internet traffic
 - Examples: Bittorrent, eDonkey, Skype, GoogleTalk...

P2P from an ISPs view

- **Good:**
 - P2P applications fill a void
 - P2P applications are easy to develop and deploy
 - P2P applications spur broadband demand
- **Bad:**
 - P2P systems form overlays at application layer
 - Routing layer functionality duplicated at app layer
 - P2P topology agnostic of underlay \rightarrow performance loss
 - Traffic engineering difficult with P2P traffic
- □ ISPs are in a dilemma

Solution: ISP-P2P cooperation

- □ Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers

Solution: ISP-P2P cooperation

- □ Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers
- Our idea:
 - ISPs: offer oracle that provides network distance info
 - P2P: use oracle to build P2P neighborhoods

Solution: ISP-P2P cooperation

- □ Insight: ISP knows its network
 - Node: bandwidth, geographical location, service class
 - Routing: policy, OSPF/BGP metrics, distance to peers

Our idea:

- ISPs: offer oracle that provides network distance info
- P2P: use oracle to build P2P neighborhoods
- □ Oracle concept
 - Service of AS / ISP
 - Input: list of possible dst IPs
 - Ouput: ranked list of dst IPs
 - > E.g. according to distances between src IP and dst IPs

Oracle service

Oracle-based peer selection \rightarrow for topology and content exchange

Oracle service (example)

Oracle service (2.)

Oracle-based peer selection \rightarrow localizes topology and traffic

ISP-P2P cooperation

□ ISP-aided optimal P2P neighbour selection

- Simple and general solution, open for all overlays
- Run as Web server or UDP service at known location
 Similar to *bind* (DNS)?

Benefits: P2P

- No need to measure path characteristics
- Easy to avoid bottlenecks => better performance

Benefits: ISPs

- Regains control over traffic
- Less traffic leaving network => cost savings
- Customer service improvement

ISP/P2P concerns

Network info

- ISP ranking algorithm confidential
- Output is ranked list or classification, actual statistics not revealed
- List can be anonymized and dynamically altered
- Network info "revealed" is already possible to reverse-engineer using available tools

□ Legal Issues

- No caching of content at ISP
- Oracle is a peer mapping service => consulting oracle does not imply participation in file-sharing

Graph experiments

In ACM SIGCOMM CCR'07

- Overlay graph structure not affected
 - Node degree, overlay path length unchanged
 - Graph connected, diameter constant
- □ Intra-AS peerings increase heavily
- Densely connected subgraphs local to ISPs
 - P2P topology correlated with AS topology
- Congestion analysis using flow conductance
 Traffic distribution with oracle near-optimal
- Feasibility study in testbed and Planetlab

Overlay-underlay topology correlation

Random vs. biased P2P topology

Packet-level simulations

In Global Internet 08

Study the Impact of Topology and User-behavior patterns on end-user performance

Methodology

- Sensitivity study
- Use different ISP / P2P topologies
- Use different user behavioral patterns
 - Content availability, churn, query patterns
- Evaluate effects of on end-user experience

ISP experience: Intra-AS content

- Content stays within ISPs network
 - Without oracle 10 to 35%
 - With oracle 55 to 80%

ISP experience: Intra AS content (2.)

Content stays within ISPs network

User experience: Download time

Mean download time reduction: 1 – 3 secs (16 – 34%)
 Consistent across topologies

User experience: Download time (2.)

Reduced mean download time

<u>Summary</u>

Oracle

- Simple and easy to implement
- Evaluation shows
 - Overlay graph structure not affected
 - Reduced AS distance
 - P2P topology correlated with AS topology
 - Traffic congestion analysis
 - Traffic distribution close to theoretical optimum

Benefits

- ISPs: regain control of network traffic
- P2P network: sees performance improvements

Extension: Multiple ISP collaboration

Oracle based global coordinate system

Question:

- What bandwidth is available to IP address A
- What is the delay to IP address B
- Insight: ISP knows
 - Backbone link capacities and current utilizations
 - Routing policy to neighbouring ISPs
 - Their IP address ranges
- Combine oracles to build global coordinate system
 - Use Oracle within AS
 - Oracle contacts other ISPs oracles for additional info
 - Provide summary information

Upcoming

- Oracle software release
 - Open source implementation will be available (Based on *bind*)
- Software patches for popular P2P clients
 - Gnutella
 - BitTorrent
 - eDonkey
 - P2P TV
- Project website:

http://www.net.t-labs.tu-berlin.de/isp-p2p/