
Users want P2P,
we make it work

Stanislav Shalunov <shalunov@bittorrent.com>
Eric Klinker <eklinker@bittorrent.com>

IETF P2P Infrastructure Workshop
Boston, May 28, 2008

Good news

• Content delivery cheaper

• More content

• More bits consumed

• More equipment made

• More Internet

Bad news

• End-user RTT in seconds

• Inefficient overlay routing

• Potential to reduce network costs a lot

• Instead, today’s P2P increases them

• More transit costs

RTT in seconds, cause

• The uplink is 250-500kb/s

• The buffer is 32-64kB

• No AQM

• TCP fills the buffer

RTT in seconds, effect

• The network is “slow”

• Web browsing barely possible

• VoIP and games essentially unusable

• Might affect neighborhood on cable?

Random peer selection

• BitTorrent gets a list of peers from tracker

• Tracker randomizes the list

• Client chooses randomly

• A bit of bias towards established peers

• Otherwise random

Why random peers?

• Rarest-first ensures best reliability

• Rarest-first helps to have pieces to trade

• Global rarest-first is approximated by local

• Best approximation if sample is unbiased

• Peer diversity

• Best peers can be far away

Solving RTT in seconds

• Different congestion control

• Scavenger service

• More explicit congestion notification

Making overlay efficient

• Tradeoff with rarest-first, but it’s OK

• Prefer peers in same AS — simplest

• Prefer peers in set of ASes — need the set

• Prefer peers in list of IP prefixes — same

• A cost minimization algorithm

How much does smart
peer selection win?

• Case study: four most popular torrents

• AS with >20 peers could avoid transit

• Swarm sizes: 9984, 3944, 2561, 2023

• Peers in ASes with >20 peers:
6863, 1926, 1045, 673

• 57% are in ASes with >20 peers

• Could reduce transit traffic at least by 57%

Caching

• What if there aren’t enough local peers?

• Make one then, a fast one. Or 10, or 100.

• Bonus: reduces uplink use on last-mile

How large does the
cache need to be?

• For 30% hit rate, 1 TB

• For 80% hit rate, 100 TB

• 1 TB fits into a device

• 100 TB can be assembled from 100 devices

Congestion control
design goals

• Keep bottleneck full

• Keep delay lower than unloaded + !

• Yield to TCP on forward path

• Separate reverse-path congestion

• React in 1 RTT

Congestion control
approach

• Continuously estimate one-way delay

• Separate into propagation and queuing

• Target a small value for queuing

Congestion control
status

• Implemented

• Instrumented

• Tested in the lab

• Tested on the Internet with 7M users

• Works as designed

• Further reductions in extra delay in future

Scavenger service

• Mark traffic with a given DSCP (001000?)

• WFQ scavenger class into a 1% allocation

• Make the buffer short in scavenger queue

• Only helps where you can tweak the router

• Probably does not help at the last mile

More explicit
congestion notification

• Learn about queue before FIFO drops

• AQM+ECN would be an improvement

• Better yet, tell the ends the queue size

• Would aid all kinds of congestion control

• Not a short-term solution

Best practical solutions

• Caching

• Smart peer selection

• Better congestion control

IETF role

• Cache discovery protocol

• Net info for smart peer selection

• Experimental congestion control

• BCP on P2P pain

BitTorrent cache
discovery protocol

• BEP 22, bittorrent.org/beps/bep_0022.html

• DNS-based

• SRV_bittorrent_tracker(rDNS(external IP))

• Remove left component of domain name
until a hit

Net info for smart peer
selection

• We’re adding preferring local AS. Is it
useful?

• Would like to select peers in way that
minimizes ISP costs

• Need more information about costs

• Expose some BGP information so the
overlay can be no worse than underlying?

Experimental
congestion control

• A framework for congestion control with
design goals different from TCP’s

• Our congestion control is specific for
!Torrent

• Other apps could benefit

Next steps

• Cache discovery

• Net info for smart peer selection

